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Mathematical models can provide key insights into the course of
an ongoing epidemic, potentially aiding real-time emergency man-
agement in allocating health care resources and by anticipating
the impact of alternative interventions. We study the ex post re-
liability of predictions of the 2010–2011 Haiti cholera outbreak
from four independent modeling studies that appeared almost
simultaneously during the unfolding epidemic. We consider the
impact of different approaches to the modeling of spatial spread
of Vibrio cholerae and mechanisms of cholera transmission, ac-
counting for the dynamics of susceptible and infected individuals
within different local human communities. To explain resurgences
of the epidemic, we go on to include waning immunity and a
mechanism explicitly accounting for rainfall as a driver of en-
hanced disease transmission. The formal comparative analysis is
carried out via the Akaike information criterion (AIC) to measure
the added information provided by each process modeled, dis-
counting for the added parameters. A generalized model for Hai-
tian epidemic cholera and the related uncertainty is thus proposed
and applied to the year-long dataset of reported cases now avail-
able. The model allows us to draw predictions on longer-term
epidemic cholera in Haiti from multiseason Monte Carlo runs, car-
ried out up to January 2014 by using suitable rainfall fields fore-
casts. Lessons learned and open issues are discussed and placed in
perspective. We conclude that, despite differences in methods that
can be tested through model-guided field validation, mathemati-
cal modeling of large-scale outbreaks emerges as an essential com-
ponent of future cholera epidemic control.
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As a major cholera epidemic spread through Haiti (1–6), lead-
ing to 170,000 reported cases and 3,600 deaths at the end of

2010 (1), four independent modeling studies (7–10) appeared al-
most simultaneously, each predicting the subsequent course of the
epidemic and/or the impact of potential management strategies.
The spate of mathematical models confirmed earlier sugges-

tions that their impact on public health practice is gaining mo-
mentum (11). Indeed mathematical models of infectious dis-
eases, once properly tested for reliability, can provide key insight
into the course of an epidemic in time for action, thus averting
deaths and reducing the number of infected patients through
a sensible allocation of resources, possibly including vaccines (12,
13). Because the Haiti cholera models were published early in
the course of the epidemic, which as of Oct 26, 2011 had gone on
to produce an estimated 485,092 cases, 259,549 hospitalizations,
and 6,712 deaths (1), the subsequent course of the epidemic
allows an assessment of the reliability of the early predictions and
a related discussion on the lessons learned.
Before 2010, cholera had never before been reported in Haiti

(14, 15) and it was thus likely that the population had no significant
prior exposure or acquired immunity to the disease. Haiti also
lacked preparedness for this epidemic and suitable health in-
frastructure through which to combat it (2, 3). Although there is
somedebate as to the source,most experts agree that the first cases

were autochthonous, brought into Haiti from a distant geographic
source (6, 16, 17), and that these cases seeded the subsequent
epidemic, which originated within the Centre department and
then spread to all of the Haitian departments, exhibiting complex
spatial and temporal patterns (1, 6) (Fig. S1).
Once a cholera epidemic starts, infected patients excrete huge

numbers of Vibrio cholerae bacteria that spread either through
water pathways (via active and passive dispersal) (10, 18–20) or
through human mobility networks involving both susceptibles and
infected individuals (8, 10, 20). Poor sanitation, which charac-
terized Haiti after the disastrous 2010 earthquake, facilitates both
types of spread and fosters the abundance of microorganisms in
the water system. Some, such as V. cholerae, are extremely ver-
satile and can quickly adapt to new environments. Being pri-
marily an aquatic bacterium, V. cholerae can persist indefinitely in
rivers, estuaries, and coastal regions without any need for human
passage. The incidence of cholera in such ecosystems fluctuates
as a function of climatic forces (in particular El Niño Southern
Oscillation, ENSO) and changes as extensively described for the
region around the Bay of Bengal (21–27) (e.g., ENSO is likely to
operate in part through interannual changes in rainfall and act as
a remote driver of the disease (26, 27)). Because of weak sanitary
infrastructures and favorable environmental conditions, it seems
therefore likely that cholera will continue to be a threat in Haiti,
as well as in many developing countries (3–5).
In this paper, we examine premises, methods, and results of

models of the 2010–2011 Haiti epidemic cholera, to derive lessons
that directly affect the predictive value of model outputs on
pathogen dispersal mechanisms, model-guided field validations,
data requirements, and model identification. On the basis of this
analysis, we highlight shortcomings of past approaches and discuss
mechanisms of disease transmission driven by rainfall. Best-per-
forming models are identified via rigorous criteria from available
epidemiological and hydrological time series and, through them,
a multiseason projection is proposed and discussed.

A First Assessment
All four models of the 2010–2011 Haiti cholera epidemic (7–10)
address the coupled dynamics of susceptibles, infected individu-
als, and bacterial concentrations in the water reservoir in a spa-
tially explicit setting of local human communities. The entire
Haitian population was assumed to be susceptible at the outset of
the epidemic. Each of the models assumed that the rate at which
susceptibles become infected is dependent on the V. cholerae
concentration in available water and, in turn, that new free-living
bacteria are produced by infected individuals through fecal
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contamination of water. The main differences among the models
stemmed from assumptions about pathogen redistribution mech-
anisms among the different human communities.
We first examine the reliability of our own original scheme (7),

later discussing the main differences from the other approaches
(8–10) and the impact of these differences on predictions. The
reference model of epidemiological dynamics and pathogen re-
distribution is described in (SI Materials and Methods). Fig. 1
compares the projected course of the epidemic as published in
January 2011 with the actual reported case counts reported at the
end of September 2011 (1). Highlighted (dark gray) in Fig. 1 is the
dataset used for calibration, which is limited to the end of De-
cember 2010 before the first decline of the incidence of the dis-
ease. The original prediction (7) ran up to the end of May 2011
(solid line in Fig. 1). The 5-mo forecast, judged in retrospect, was
quite robust and could have been used to make practical decisions
and act in time. To facilitate a further assessment of our model
reliability, we have now extended the original prediction to the
end of September 2011 (Fig. 1, dashed line). Whereas the order
of magnitude of total cumulated infections is captured up to
September 2011, important features are clearly missed, such as
the June–July revamping of weekly incidence (which is likely
correlated to seasonal rainfall, Fig. 1, Top).
The various approaches dealing with the Haiti cholera out-

break (7–10) may be differentiated on the basis of their treat-
ment of spatial transmission mechanisms. Andrews and Basu (9)

treated each Haiti administrative department independently
without explicitly considering the spread of cholera among them
whereas the other models (7, 8, 10) explicitly modeled inter- and
intradepartmental pathogen redistribution. Different spatial
resolutions also characterize the metacommunity models (10
local communities in ref. 8, 11 in ref. 9, 560 in ref. 7, and on the
order of 20,000 in ref. 10).
For those studies that provided predictions of the subsequent

course of the outbreak, the projections can be tested against
current data, yielding a first assessment of validity and the limi-
tations of different modeling assumptions. For example, Andrews
and Basu (9) forecast a toll of 779,000 cases and 11,100 deaths
from March 1 to November 30, 2011 that significantly over-
estimated the course of the epidemic; 324,405 new reported cases
(accounted for as proposed in ref. 9) (SI Materials and Methods)
and 2,040 deaths were actually reported between March 1 and
October 26 (1). We suggest that the differences with observa-
tional data stem from the nature of the modeling assumptions
that undermine the predictability of the approach. In fact, dis-
regarding interdepartmental pathogen dispersal mechanisms
implies the independent fitting of the model parameters to 11
separate departments. Therefore, model parameters are also
charged with the effects of long-range transmission mechanisms,
including humanmobility that is empirically known to be reaching
well beyond departmental domains (28). Regardless of calibration
techniques, the large number of parameters (33 vs. 5 in ref. 7)
likely increases the uncertainty of early projections.
The role of asymptomatic carriers may be clarified by the de-

tailed examination of one scheme (8) that employs transmission
mechanisms similar to those in ref. 7 (save for the inclusion of
a human-to-human contagion) but neglects the role of inapparent
infections. Asymptomatic carriers are thought to be a critical
factor in cholera epidemics (29), particularly in Haiti (7, 9, 10),
because of their number, unimpaired mobility, and thus major
role in long- and short-range disease transmission. Inapparent
infections are estimated at 20% of the total (9, 10, 29–31,).
Moreover, they lead to some acquired immunity, thus temporarily
reducing the number of persons in a region who are actually
susceptible to the disease. The model by Tuite et al. (8) with
realistic values of the basic reproduction number R0 (SI Materials
and Methods) fits the initial phases of the epidemic but would
predict an excessive number of reported cases at later stages. To
overcome this limitation, the authors propose an ad hoc sixfold
reduction of the effective reproduction number in the first 3 mo
of the epidemic, owing to disease-control interventions. If the
compartment of susceptibles is not depleted otherwise, an equal
decrease in transmission rates is implied, which seems unrealistic
compared with the sanitation interventions analyzed. Adopting
a model in which inapparent infections are accounted for avoids
the need to force effective reproduction numbers to decrease in
time because of unspecified disease-control measures (32).
An interesting mathematical cholera transmission model, in-

dividual based and of stochastic nature (10), focuses on the
effects of vaccination strategies for epidemic cholera in Haiti. It
addresses the same basic transmission processes as those in refs. 7
and 8, but also includes a 1- to 5-d latent period, a hyperinfective
state of freshly shed bacilli, and a model of human mobility that
incorporates remotely sensed population density data at 1-km2

resolution and the localization of major rivers and highways. The
study does not attempt to tune processes by matching observed
space–time distributions of reported cholera cases (10) but is
rather based on model parameter values and ranges from the lit-
erature. The main shortcomings of this approach include a limited
capability of reproducing past observed infections and thus of
reliably predicting future epidemic evolutions.

A Second Assessment
The newly available information on the Haitian outbreak allows
a thorough reanalysis of primary and ancillary transmission mech-
anisms. The result of our reanalysis is a host of models of different
complexity that are described in SI Materials and Methods.
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Fig. 1. (Top) Daily decadal rainfall intensity, averaged over the entire Haiti
region (SI Materials and Methods). (Middle) Weekly reported cases (1) (gray
bars) compared with the simulated incidence pattern (solid line) computed
by the model in ref. 7. Data from each department were collected until
September 30, 2011. The calibration dataset (dark gray) was limited to the
total reported cases available until December 2010. The solid line shows the
published early prediction (7) that was run until the end of May 2011. To
facilitate the assessment, we have now extended the original prediction to
the end of September 2011 (dashed line). (Bottom) Simulated and reported
weekly cumulated cases.
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Because the analysis is now extended to a 1-y time span, the
loss of acquired immunity (i.e., a flux from the pool of recovered
cases back to the pool of susceptible individuals) cannot be ig-
nored. It is thus accounted for by all models compared here. We
have also revised our metacommunity model of transmission
among human settlements exposed to the infection by including
specific mechanisms of hydrological transport (10, 18–20), as
suggested by empirical observation of the downstream spreading
of early infections along the Artibonite River (6). Pathogen
dispersal along waterways is described (i) by a careful extraction
of the river networks (Fig. 2) from digital terrain maps (DTMs),
through suitable geomorphologic criteria (SI Materials and
Methods), and (ii) as a biased random walk process on an ori-
ented graph (18) (Materials and Methods and SI Materials and
Methods). Pathogen redistribution is also enhanced by contami-
nation of the water reservoir driven by heavy seasonal rains
(Materials and Methods). Inclusion of such overloads was
prompted by the clear empirical correlation, observed in Haiti in
June and July, between weekly rainfall and enhanced infections
(Fig. 1). We considered two options: an increase of contamina-
tion rates depending on rainfall intensity and a mechanistic ac-
count of the washout of open-air defecation sites by surface
runoff (SI Materials and Methods). Human mobility patterns are
explicitly modeled (8, 10, 20). Observations of fast intercatch-
ment transmission of the infection that would not be explained
by water pathway pathogen dispersal and of actual individual
displacements in times of cholera support this assumption. Mo-
bility patterns are described by a layer of nodal connectivity (Fig.
2D and Materials and Methods). With suitable spatial resolution,
human settlements may be placed at nodes of the hydrological
network (Fig. S2), and edges are measured by the distances
connecting them (SI Materials and Methods). We assume that
susceptible and infected individuals engage in short-term trips
from the communities where they live toward other settlements.
While traveling or commuting, susceptible individuals can be
exposed to pathogens and return as infected carriers to their
settlement (10, 20). Similarly, infected hosts can disseminate the
disease away from their home community—in many cases
infected individuals are asymptomatic and thus are not barred
from their usual activities. Connectivity structures and fluxes of
human mobility have long been studied in epidemiology (33, 34),
often on the basis of gravity-like models where the flux between
two communities owing to human mobility is proportional to the
product of the respective populations and decays with the dis-
tance separating them (10, 20, 35). Our choice of a model of this
kind (SI Materials and Methods) is indirectly supported by a re-
cent empirical study (28) that tracked daily Haitian average

movements through mobile phones to determine likely new areas
for cholera outbreaks far from the site where the disease was first
detected. The study proves that outbound travels from the
source area are frequent and most of the country received per-
sons from the affected area whereas the vast majority of indi-
viduals leaving the source area traveled to just a few large
recipients that include surrounding communal sections.
We have also comparatively tested other disease transmission

mechanisms. The revised models considered in particular en-
hanced community-wide transmission due to a hyperinfectious
V. cholerae state (freshly shed cholera pathogens requiring much
lower concentrations to cause infection) (9, 10, 29, 36, 37). La-
tent stages and human-to-human transmission have been ruled
out as discussed in SI Materials and Methods. Other cofactors of
disease transmission, judged of lesser importance, are also dis-
cussed in SI Materials and Methods.
Parameter calibration is performed via Markov chain Monte

Carlo techniques (38, 39) (SI Materials and Methods). To com-
pare the ability of different models (with different added com-
plexity and parameters) to reproduce the spatiotemporal
epidemic patterns observed in Haiti, we have ranked the per-
formances of different candidate models according to Akaike’s
information criterion (AIC) (40). AIC is a model-selection
procedure that explicitly takes into account the trade-off be-
tween model accuracy and complexity. The ranking is based on
AIC scores that measure the goodness of fit, discounting for the
different number of calibration parameters (SI Materials and
Methods). We specifically tested four candidate models: (i)
a simple model with no pathogen hyperinfectivity and a single
water compartment (SI Materials and Methods), (ii) the same
model with pathogen hyperinfectivity, (iii) a model with two
water compartments (water reservoir and sewage system) but no
hyperinfectivity, and (iv) the same as in iii but including vibrio
hyperinfectivity. AIC scores are in Table S1. The optimal model
is fully described in Materials and Methods. According to the
results of model identification, bursts of infections can be best
explained by accounting for larger concentrations in the water
compartment due to massive pathogen loads brought by hydro-
logic washout. AIC not retaining the modeling of hyperinfective
stages of the V. cholerae bacterium may be surprising given its
importance in other approaches. Our result would confirm ear-
lier remarks (41) suggesting that the timescale of hyperinfectivity
is so short that all that matters for modeling purposes would be
the overall rate of transmission resulting from the many mech-
anisms that underlie it, especially given the complexity of the
spatial linkages. This result cannot be generalized, however, as
discussed in SI Materials and Methods.
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Fig. 2. (A) Color-coded digital terrain elevation map (DTM) of
Haiti; (B) the subdivision of Haitian territory in hydrological
units (subbasins) extracted from the DTM, as a result of the
convergence of several geomorphological criteria (SI Materials
and Methods); (C) spatial distribution of population density
obtained by LandScan remote sensing, which is translated into
a geo-referenced spatial distribution of nodes i endowed with
population Hi (SI Materials and Methods); (D) A relevant subset
of the network of human mobility, here portrayed synthetically
by the four largest outbound connections for each node.
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Fig. 3 shows the results of the best-ranking model and its
estimation uncertainty. Optimal parameters and their credible
intervals are reported in Table S2. The model can better re-
produce the timing and the magnitude of the epidemic in the 10
Haitian departments (Fig. S4), including the seasonal June–July
resurgence, in particular in the most populated and affected
regions (Artibonite and Ouest). The capabilities of describing the
spatial and temporal patterns of the reported infections grew
considerably with the information gained after the early pre-
dictions, although the short-term prognostic value of the early
model (7) remains noteworthy. Thus, different levels of model
sophistication might serve well for evolving insight into the
course of an ongoing epidemic. In particular, the model including
rainfall drivers and waning immunity allows us to draw pre-
dictions for long-term cholera dynamics in Haiti: Fig. 4 shows
a multiseason projection up to January 2014, obtained by using
suitable rainfall field predictions (SI Materials and Methods). We
have chosen to run the example with an average duration of the
acquired immunity of 3 y (it must be noted, however, that in such
cases model-guided field studies on the rate of loss of acquired
immunity become crucial). The related predictions are fairly
consistent in suggesting significant Fall bursts of infections,
stemming from seasonal rainfall and from the timing of the re-
plenishment of the pool of susceptibles from previous infections
due to immunity waning. The underestimation of the predicted

infections in the late Fall of 2011 (for which data are now
available) is likely explained by the fact that rainfall patterns
projected from the end of September missed the extreme rainfall
events that actually occurred in the first decade of October.
Note finally that this is a worst-case scenario that assumes no
improvement in sanitation and ignores any decrease in exposure
upon learning from past experience.

Discussion
The encouraging outcomes of early predictions of the 2010–2011
Haiti cholera outbreak and the broadened capabilities of a gen-
eralized approach based also on later observations have been
highlighted. Despite their capabilities, several limitations and
open issues remain toward a general predictive model of epi-
demic cholera.
One important limitation for long-term predictions is our rela-

tively poor knowledge of community-wide loss rates of acquired
immunity (here characterized by a deterministic rate parameter ρ)
(Materials and Methods). Susceptibles decrease because of infec-
tions and mortality and increase through the loss of immunity of
recovered cases. The dynamics of recovered individuals play a cru-
cial role in the long run. Although at short timescales it is reason-
able to assume complete immunity of recovered patients, waning or
boosting of acquired immunities at longer times may have a sub-
stantial impact on epidemic dynamics. Acquired immune responses
may vary in relation to age group,V. cholerae strain (e.g., serogroup,
biotype, and serotype) (42), the severity of the contracted infection
(43), and endemic vs. epidemic cholera (44). On a population level,
the buildup of durable immunity usually results in a lengthening of
the interepidemic intervals. However, complex cyclic climatic
forcings may control interarrivals of cholera outbreaks. Un-
fortunately, cholera elicits only a temporary immunity (44) whose
uncertainty affects the long-term replenishment of the pool of
susceptibles. Thus, the fraction of the population susceptible to the
disease at the onset of subsequent outbreaks will likely be pre-
dictable only with great uncertainty. Worst-case scenarios (i.e.,
assuming again the entire Haitian population being susceptible)
seem too crude an approximation for predicting a meaningful de-
ployment of suitable medical supplies and staff.
In a similar vein, the minimalist assumption of a constant ratio

of asymptomatic to symptomatic infections during the course of
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Fig. 3. Simulated evolution of the Haiti epidemic cholera from October 2010
to September 2011 by the revised complete model that includes bursts of
infections caused by pathogen loads brought into the water reservoir by
hydrologic washout. The final choice follows from the ranking of the per-
formances of different candidate models according to Akaike’s information
criterion (40). (Upper) Weekly cumulated reported cases are visualized as the
sum of the reported cases in each department (gray bars), fitted by the sim-
ulation of the revised model at the department level (blue solid line). The
performance of the model at the department level is also shown (blue solid
lines). (Inset) Haitian departments are listed as follows: 1, Nord-Ouest; 2, Nord;
3, Nord-Est; 4, Artibonite; 5, Centre; 6, Grand-Anse; 7, Nippes; 8, Ouest; 9, Sud;
and 10, Sud-Est. (Lower) Evolution of reported new weekly cases (gray bars)
along with the simulated incidence pattern of the revised model (solid line).
Error bars highlight the range of uncertainty due to parameter estimation
(described in detail in SI Materials andMethods). See also animation Movie S1.
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Fig. 4. Multiseasonal evolution of Haiti epidemic cholera (from October 2010
to January2014) simulatedbythebest-performingmodel. Reportednewweekly
cases (gray bars) are shown along with the simulated incidence pattern (solid
line). (Upper) Rainfall is predicted starting from October 1, 2011. The range of
uncertaintydue to theuncertainty in rainfall forecast (SIMaterials andMethods)
is highlightedby the shading.Reddotshighlight cases reportedafter September
and not used for calibration. Note the agreement between the epidemic fading
in the data and the model projection, with the exception of an unpredicted
infections peak in the late Fall of 2011. This exception is likely explained by the
extreme rainfall events that occurred in the first decade of October that were
missed by the rainfall patterns projected from the end of September.
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the epidemic, to which modeling results prove quite sensitive (32),
is clearly an approximation. Extended epidemiological evidence
and relatedly improved modeling are needed. Also, individuals
with blood group O are more prone to severe cholera symptoms
than other blood group individuals, although the mechanism un-
derlying this association is still under debate (45, 46). Hence, the
distribution of blood groups among the population might need
to be considered where significant differences emerge. Besides
blood group, moreover, the susceptibility to cholera depends on
local intestinal immunity (from previous exposure or vaccination),
bacterial load and intrinsic host factors such as stomach pH
(gastric acid provides a barrier) (47) whose community-wide
evaluations are difficult. One further issue concerns the modeling
of the rapid patient discharge from treatment centers. Infected
patients are released when fewer than three watery stools over the
past 6 h are observed. This action is reasonable, given the need for
space in emergency hospitals, but poses the problem that released
patients are treated as recovered. However, they still excrete sig-
nificant quantities of vibrios and thus contribute to enhanced
spread of the disease, a process that is not accounted for in any of
the proposed models. Although backtracking the mobility of early
discharges seems possible on the basis of treatment center ac-
ceptance data, a large-scale application seems impractical. A re-
lated issue concerns the actual sanitation within treatment centers,
e.g., the isolation of their latrines from the local water cycle es-
pecially during acute phases of the epidemic. From a modeling
viewpoint, all this information is currently combined into cali-
bration parameters at the loss of predictive power.
Another issue concerns the proper depletion of the pool of

susceptibles due to intervention strategies. In this context, two
main interventions have been discussed: vaccination and the
extended use of antibiotics (48, 49). Whereas the idea of mass
vaccination in Haiti has split experts (13), the impact of pa-
rameter uncertainty on the effects of vaccinations is certainly in
need of an assessment. A more uniform opinion concerns the use
of antibiotics. With respect to the latter, the World Health Or-
ganization generally recommends the administration of anti-
biotics only to severe cases of cholera (50). However, soon after
the onset of the cholera epidemic in Haiti, many researchers
demanded a widening of these regulations toward an extended
use of antibiotics (49, 51). In favor of a broader use of antibiotics
to all hospitalized cases, regardless of the severity of the symp-
toms, is the shorter duration of the acute phase and the reduced
shedding of V. cholerae bacteria into the environment (52). The
new policies therefore recommend also treating moderately ill
patients with antibiotics (53). Significant differences in the use of
antibiotics existed among treatment centers. The most extreme
examples were health partners who used antibiotics in a pro-
phylactic manner to protect family/community members affili-
ated with cholera patients (54). The most common antibiotic
used in Haiti is a single dose of doxycycline, which proved very
effective for cholera treatment (55). However, drastic increases
of doxycycline/tetracycline-resistant isolates were recently re-
ported, referring to a cholera outbreak in Zambia (56) where
a clear correlation was observed between the development of
resistant strains and large-scale use of antibiotics (either for
treatment or for prophylaxis) (56). In fact, many drug-resistant
strains of V. cholerae have been described within recent years due
to the spread of antibiotic resistance genes by horizontal gene
transfer (HGT) (for recent review see ref. 57). That antibiotics
themselves, as well as signals within V. cholerae’s environmental
niche, induce diverse mechanisms of HGT (58–61) strengthens
the fear of the development of antibiotic resistance in Haiti. It is
therefore crucial to monitor the resistance pattern of the circu-
lating V. cholerae strains. Regardless of deeper questions about
possible development of specific resistance by the bacterial
strains, we note that only very detailed information—possibly
beyond reach—about clinical practice in space and time would
allow us to better frame the related parameters of the trans-
mission model (Materials and Methods).

In conclusion, weak sanitary infrastructures and favorable
environmental conditions will likely lead to indefinite persis-
tence of the pathogen within Haiti, suggesting that cholera will
continue to be a threat for many years. Thus, we deem it signif-
icant that reliable predictions of epidemic cholera within Haiti
could be offered by spatially explicit quantitative disease trans-
mission models. Such models could thus be effectively used in the
very course of an outbreak to allocate healthcare resources. To
some extent, and with greater uncertainty, they could also possibly
evaluate alternative strategies of emergency management. Al-
though deeper integration of epidemiological, socioeconomical,
and environmental data is needed to clarify issues still open,
and despite differences in methods that can be tested through
model-guided field validation, mathematical modeling of large-
scale outbreaks emerges as an essential component of the control
of future cholera epidemics and of modern epidemiology.

Materials and Methods
We describe in what follows only the best-ranked model according to the AIC
(see SI Materials and Methods for a detailed description of all candidate
models). Let SiðtÞ, IiðtÞ, and RiðtÞ be the local abundances of susceptible,
infected, and recovered individuals in each node i of the river network at
time t, and let BiðtÞ be the concentrations of V. cholerae in the water res-
ervoir. We consider n metacommunities (i ¼ 1;n) spatially distributed within
a given domain that embeds the hydrologic and the human mobility net-
works. Epidemiological dynamics and pathogen transport can be described
by the following set of coupled differential equations:

dSi
dt

¼ μðHi − SiÞ−F iðtÞSi þ ρRi [1]

dIi
dt

¼ F iðtÞSi − ðγþ μþ αÞIi [2]

dRi

dt
¼ γIi − ðρþ μÞRi [3]

dBi

dt
¼− μBBi − l

 
Bi −

Xn
j¼1

Pji
Wj

Wi
Bj

!
þ p

Wi
½1þ ϕJiðtÞ�GiðtÞ: [4]

The evolution of the susceptible compartment (Eq. 1) is a balance between
population demography and infections due to contact with pathogens
infesting the water reservoir. The host population is assumed to be at
a demographic equilibrium, where μ is the human mortality rate and Hi is
the size of the local community. The total contact rate F iðtÞ ¼
βðð1−mÞBi=ðK þ BiÞ þm

Pn
j¼1QijBj=ðK þ BjÞÞ accounts for both local (first-

term) and mobility-related (second-term) disease transmission. The param-
eter β represents the rate of exposure to contaminated water (possibly
varying in time and/or space to account for heterogeneous sanitation con-
ditions and related control strategies) (7), whereas B=ðK þ BÞ is the proba-
bility of becoming infected due to the exposure to a concentration B of
vibrios, with K being the half-saturation constant (62). Human mobility
patterns are defined according to a connection matrix in which individuals
leave their original node (say i) with a probability m, reach their target lo-
cation (say j) with a probability Qij , and then come back to node i. Here, we
have opted for a gravity-like model of connections Qij that decays expo-
nentially with nodal distance; i.e., Qij ¼ Hje−dij=D=ðPN

k≠iHke−dik=DÞ, where dij is
the (shortest-path) distance between nodes i and j, and D is the deterrence
cutoff distance. The dynamics of the infected compartment (Eq. 2) are
a balance between newly infected individuals and losses due to recovery and
natural/pathogen-induced mortality. Infected individuals recover at a rate γ
or die of natural or cholera-induced mortality at a rate μ or α, respectively.
The dynamics of recovered individuals are considered here (Eq. 3), because
usually waterborne diseases confer just temporary immunity (25). The pa-
rameter ρ quantifies the loss of acquired immunity and the related re-
plenishment of the susceptible compartment. Infected individuals contribute
to the concentration of free-living vibrios in the water reservoir at a rate
p=Wi , where p is the contamination rate andWi (with Wi ¼ cHi) (7, 19) is the
volume of water in the reservoir. To account for both local and mobility-
related pathogen dispersion, here we actually consider the total infective
pool GiðtÞ; i.e., GiðtÞ ¼ ð1−mÞIi þm

Pn
j¼1Qji Ij . To address the seasonal

revamping of infections, we assume that the baseline contamination rate
can be increased by local rainfall intensities JiðtÞ via a runoff coefficient ϕ
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(SI Materials and Methods). We further assume that the vibrios diluted in the
water reservoir undergo hydrological dispersal at rate l. The spread of
pathogens over the river network is described as a biased random walk
process on an oriented graph in which pathogens move from node i to node
j of the hydrological network with probability Pij (18, 63). The transport
process is assumed to be conservative, i.e.,

Pn
j¼1Pij ¼ 1, except for the net-

work outlets where absorbing boundary conditions are imposed. Finally, the
bacteria in the water reservoir are assumed to die at a constant rate μB. As
initial conditions, we impose that, as of October 18, 2010 (t ¼ 0), we
have Sið0Þ ¼ Hi except for the nodes i where Iið0Þ is given, matching the
reported cases as detailed in ref. 6. Also, Rið0Þ ¼ 0 for all nodes i, and Bið0Þ
is in equilibrium with the local number of infected cases; i.e., Bið0Þ ¼
pIið0Þ=ðWiμBÞ. Several model parameters can be estimated from the litera-
ture (Table S2). Five parameters are obtained through calibration of con-
trasting model simulations with the reported cumulative cases in each
Haitian department as recorded in the epidemiological dataset (SI Materials

and Methods). These parameters are the ratio θ ¼ p=ðKcÞ, the hydrological
dispersal rate l, the human mobility rate m, the average deterrence distance
D, and the contamination parameter ϕ (SI Materials and Methods).
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