### Supplementary Appendix

This appendix has been provided by the authors to give readers additional information about their work.

Supplement to: Luquero FJ, Grout L, Ciglenecki I, et al. Use of *Vibrio cholerae* vaccine in an outbreak in Guinea. N Engl J Med 2014;370:2111-20. DOI: 10.1056/NEJMoa1312680

### Table of Contents

| S1.             | List of authors                                                                                                        | .3      |
|-----------------|------------------------------------------------------------------------------------------------------------------------|---------|
| S2.             | Cholera in the Republic of Guinea                                                                                      | .4      |
| S3.             | Cholera epidemic in 2012                                                                                               | .4      |
| S4.<br>effectiv | Description of the case-patient and control-subjects characteristics included in the primary<br>reness analysis        | .7      |
| S5.<br>effectiv | Description of the case-patient and control-subjects characteristics included in the indicator bias<br>reness analysis | ;<br>.8 |
| S6.<br>vaccina  | Sensitivity analysis of the vaccine coverage estimates considering the uncertainty about the ation status.             | 10      |
| S7.             | Adverse events following immunization                                                                                  | 1       |
| S8.             | References                                                                                                             | 12      |

#### S1. List of authors

Francisco J. Luquero, MD, MPH<sup>1\*</sup>, Lise Grout, DVM, MPH<sup>1,2</sup>, Iza Ciglenecki, MD, MSc<sup>2</sup>, Keita Sakoba, MD<sup>3,4</sup>, Bala Traore, MD<sup>5</sup>, Melat Heile, NP<sup>7</sup>, Alpha Amadou Diallo, MSc<sup>6</sup>, Christian Itama, MD<sup>8</sup>, Anne-Laure Page, PhD<sup>1</sup>, Marie-Laure Quilici, PhD<sup>9</sup>, Martin A Menguel MD, MSc<sup>4</sup>, Jose Maria Eiros MD, PhD<sup>10</sup>, Micaela Serafini, MD, MPH<sup>2</sup>, Dominique Legros, MD, MPH<sup>2</sup>, Rebecca F. Grais, PhD<sup>1</sup>.

\*Corresponding Author: Francisco J. Luquero, Epicentre, 8 rue Saint Sabin, 75011 Paris France, email: Francisco.Luquero@epicentre.msf.org

<sup>1</sup>Epicentre, Paris, France

<sup>2</sup>Médecins sans Frontières, Geneva, Switzerland

<sup>3</sup>Ministry of Health, Conakry, Republic of Guinea

<sup>4</sup>African Cholera Surveillance Network, Agence de Médicine Préventive Paris, France

<sup>5</sup>Direction Préfectorale de la Santé, Ministry of Health, Conakry, Republic of Guinea

<sup>6</sup> Research and Documentation Service, Ministry of Health, Conakry, Republic of Guinea

<sup>7</sup>Médecins sans Frontières, Conakry, Republic of Guinea

8World Health Organization, Conakry, Republic of Guinea

9National Reference Centre for Vibrios and Cholera, Enteric Bacterial Pathogens Research & Expertise

Unit, Institut Pasteur, Paris, France

<sup>10</sup>Department of Microbiology, University of Valladolid, Valladolid, Spain

### S2. Cholera in the Republic of Guinea

The 7<sup>th</sup> cholera pandemic spread into the Republic of Guinea (Guinea) in 1970; following this event, Guinea regularly reported cholera cases to the World Health Organization (WHO). The largest outbreak was observed in 1994 with more than 30,000 cases and 670 deaths. From 2003 to 2007, the Ministry of Health (MoH) of Guinea notified cholera cases to the WHO each year, with cases consistently reported form the Capital, Conakry. The most affected areas are usually the coastal prefectures and the islands (Maritime Guinea, where the capital Conakry is located)<sup>1</sup>. The epidemics spread in Guinea during the rainy season that lasts from July to September. From 2008 to 2011, only sporadic cases were reported<sup>2</sup>.

### S3. Cholera epidemic in 2012

In 2012, the first cholera case was reported in Forécariah (Maritime Guinea) on February 2. Both the Microbiology National Laboratory and the Institut Pasteur in Paris confirmed that the circulating strain was *Vibrio cholerae* O1 El Tor-Ogawa. Further studies based on genetic markers analysis showed that it was an hybrid El Tor strain possessing the classical B subunit cholera toxin gene (*ctxB1* genotype)<sup>3</sup>. From February 2 to October 31, a total of 7,350 cases including 133 deaths were reported to the WHO. This number of cases corresponds to an attack rate of 6.4 per 10,000 people. The case fatality ratio (CFR) per 100 cases was 1.8 at country level. The peak of the epidemic was observed in week 34, in which 1,152 cases were reported (MoH data, Figure S1). At country level, the vast majority of cases were reported during the rainy season.



Figure S2 shows a more detailed description of the geographical distribution of the epidemic. Four prefectures had attack rates over 15 cases per 10,000 individuals (Conakry, Dubréka, Coyah and Fria); in Fria and Conakry the attack rate reached 27 and 26 cases per 10,000 respectively.

In the city of Conakry, 4,617 cases were reported, which represent 63% of the total number of cases at country level. The first case was declared in Conakry in week 22 (i.e. 17 weeks after the first notification in Forécariah). In Conakry, the peak of the epidemic was observed in epidemiological week 34 in which 727 cases were reported.



The median age of the patients was 25 years old (inter quartile range: 16-37). The number of reported cases was similar in men (49%) and women (51%).

The epidemic evolved with a different dynamic in the vaccinated areas compared with the unvaccinated areas (Figure S3). In the prefectures of Boffa and Forécariah, 283 and 344 cases were respectively reported in 2012.

In the country as a whole, 93% of the cases were reported after week 24, when the implementation of the vaccination campaigns ended. Conversely, in the vaccinated areas of Boffa and Forécariah the percentage of cases reported after the implementation of the vaccination campaigns was respectively 45% and 16% (Figure S4).



Figure S3: Target areas for the non-selective mass vaccination campaigns, Guinea, 2012.



Figure S4. Evolution of the outbreak in the country and in the vaccinated prefectures.

## S4. Description of the case-patient and control-subjects characteristics included in the primary effectiveness analysis.

The Table S1 shows the socio-economic characteristics and the exposure to different risk factors for cholera among case-patients and control individuals. We observed a statistical association between being a case-patient and eating in public places and sharing the latrine with a cholera case. The potential confounding effect of factors with P values lower than 0.2 was assessed in the multivariate conditional logistic regression analysis.

|                                                | Controls |        | Cases |        |         |
|------------------------------------------------|----------|--------|-------|--------|---------|
| _                                              | n        | (%)    | n     | (%)    | P value |
| Profession                                     |          |        |       |        | 0.18    |
| Trader                                         | 29       | (18.1) | 8     | (20.0) |         |
| Farmer                                         | 37       | (23.1) | 16    | (40.0) |         |
| Pupil / student                                | 29       | (18.1) | 3     | (7.5)  |         |
| Fisherman                                      | 10       | (6.3)  | 3     | (7.5)  |         |
| Housewife                                      | 10       | (6.3)  | 1     | (2.5)  |         |
| Unemployment                                   | 22       | (13.8) | 6     | (15.0) |         |
| Other                                          | 23       | (14.4) | 3     | (7.5)  |         |
| Head of the household's educational degree     |          |        |       |        | 0.13    |
| Non                                            | 43       | (27.2) | 13    | (32.5) |         |
| Primary                                        | 5        | (3.2)  | 4     | (10.0) |         |
| Secondary                                      | 21       | (13.3) | 2     | (5.0)  |         |
| University                                     | 5        | (3.2)  | 0     | (0.0)  |         |
| Literate                                       | 84       | (53.2) | 21    | (52.5) |         |
| Radio                                          | 113      | (70.6) | 27    | (67.5) | 0.68    |
| Bicycle                                        | 82       | (51.2) | 19    | (47.5) | 0.64    |
| Telephone                                      | 128      | (80.0) | 27    | (67.5) | 0.10    |
| Generator                                      | 36       | (22.5) | 6     | (15.0) | 0.28    |
| Television                                     | 36       | (22.5) | 6     | (15.0) | 0.27    |
| Fridge                                         | 1        | (0.6)  | 0     | (0.0)  | 0.50    |
| Boat                                           | 26       | (16.3) | 9     | (22.5) | 0.29    |
| Household size                                 |          |        |       |        | 0.06    |
| 0-4 members                                    | 34       | (21.3) | 17    | (42.5) |         |
| 5-7 members                                    | 40       | (25.0) | 7     | (17.5) |         |
| 8-12 members                                   | 49       | (30.6) | 9     | (22.5) |         |
| >12 members                                    | 37       | (23.1) | 7     | (17.5) |         |
| Proportion of children attending school in the |          |        |       |        |         |
| household                                      |          |        |       |        | 0.13    |
| None of them                                   | 33       | (22.9) | 14    | (37.8) |         |
| Less than half                                 | 42       | (29.2) | 11    | (29.7) |         |
| More than half                                 | 51       | (35.4) | 8     | (21.6) |         |
| All of them                                    | 18       | (12.5) | 4     | (10.8) |         |
| Distance to the closet health center           |          |        |       |        | 0.10    |
| Need of transport                              | 107      | (66.9) | 31    | (77.5) |         |
| Walking distance                               | 53       | (33.1) | 9     | (22.5) |         |
| Other cholera cases in the household           | 4        | (2.5)  | 3     | (7.5)  | 0.15    |

*Table S1. Characteristics of the case-patients and control-subjects included in the vaccine effectiveness study, Boffa and Forécariah, Guinea, 2012.* 

| Travelling or receiving a visit in the last week | 42  | (26.3) | 13 | (32.5)  | 0.41  |
|--------------------------------------------------|-----|--------|----|---------|-------|
| Participation in a burial ceremony               | 3   | (1.9)  | 0  | (0.0)   | -     |
| Water source                                     |     |        |    |         | 0.98  |
| Pump                                             | 63  | (39.4) | 17 | (42.5)  |       |
| Protected well                                   | 21  | (13.1) | 5  | (12.5)  |       |
| Unprotected well                                 | 10  | (6.3)  | 2  | (5.0)   |       |
| Water from natural source                        | 47  | (29.4) | 11 | (27.5)  |       |
| Other                                            | 19  | (11.9) | 5  | (12.5)  |       |
| Treatment of the drinking water                  | 34  | (21.3) | 5  | (12.8)  | 0.15  |
| Recipient to store drinking water with a lid     | 158 | (98.8) | 40 | (100.0) | 0.35  |
| Eating food in a public space                    |     |        |    |         | 0.02  |
| Never                                            | 72  | (45.0) | 11 | (28.2)  |       |
| Sometimes                                        | 49  | (30.6) | 20 | (51.3)  |       |
| Soap available in the household                  | 78  | (49.1) | 16 | (40.0)  | 0.30  |
| Washing hands before eating                      | 143 | (89.4) | 33 | (82.5)  | 0.22  |
| Washing hands after eating                       | 24  | (15.0) | 4  | (10.0)  | 0.37  |
| Washing hands after going to the toilet          | 72  | (45.0) | 17 | (42.5)  | 0.77  |
| Washing hands after cleaning a baby after        |     |        |    |         |       |
| defecation                                       | 12  | (7.5)  | 1  | (2.5)   | 0.20  |
| Washing hands before cooking                     | 21  | (13.1) | 5  | (12.5)  | 0.90  |
| Usual place of defecation                        |     |        |    |         | 0.12  |
| Latrine                                          | 81  | (50.6) | 17 | (42.5)  |       |
| Pit in the yard                                  | 56  | (35.0) | 14 | (35.0)  |       |
| In the ground                                    | 23  | (14.4) | 9  | (22.5)  |       |
| Sharing the latrine                              |     |        |    |         | 0.71  |
| Just for the household                           | 31  | (22.3) | 6  | (18.8)  |       |
| Several households                               | 59  | (42.4) | 13 | (40.6)  |       |
| Anybody                                          | 49  | (35.3) | 13 | (40.6)  |       |
| Sharing the latrine with someone suffering       |     |        |    |         |       |
| from cholera                                     | 5   | (3.7)  | 6  | (20.0)  | 0.001 |
| Flooding latrine                                 | 13  | (9.5)  | 4  | (12.9)  | 0.54  |

### S5. Description of the case-patient and control-subjects characteristics included in the indicator bias effectiveness analysis.

The Table S2 shows the socio-economic characteristics and the exposure to different risk factors for cholera among non-cholera watery diarrhea case-patients and control-subjects included in the indicator bias analysis. In this analysis, cases were defined as individuals with non-cholera watery diarrhea who: (i) gave written informed consent, (ii) resided in the study areas since April 16, 2012 and their residence could be located after discharge for acquisition of information about vaccination and other data, (iii) were older than 12 months and (iv) had a negative cholera RDT result. Four matched controls by age, sex and residence place were recruited for each case. The non-cholera watery diarrhea case-patients and the matched control-subject showed similar socio-economic characteristics and had similar exposure to different risk factors for cholera infection (Table S2).

|                                                  | C   | ontrols | (  | Cases   |         |
|--------------------------------------------------|-----|---------|----|---------|---------|
|                                                  | n   | (%)     | n  | (%)     | P value |
| Profession                                       |     |         |    |         | 0.50    |
| Trader                                           | 22  | (12.8)  | 8  | (18.6)  |         |
| Farmer                                           | 48  | (27.9)  | 9  | (20.9)  |         |
| Pupil / student                                  | 19  | (11.0)  | 3  | (7.0)   |         |
| Fisherman                                        | 5   | (2.9)   | 2  | (4.7)   |         |
| Housewife                                        | 26  | (15.1)  | 8  | (18.6)  |         |
| Unemployment                                     | 36  | (20.9)  | 11 | (25.6)  |         |
| Other                                            | 16  | (9.3)   | 2  | (4.7)   |         |
| Head of the household's educational degree       |     |         |    |         | 0.24    |
| Non                                              | 34  | (19.9)  | 13 | (31.0)  |         |
| Primary                                          | 16  | (9.4)   | 3  | (7.1)   |         |
| Secondary                                        | 11  | (6.4)   | 4  | (9.5)   |         |
| University                                       | 5   | (2.9)   | 3  | (7.1)   |         |
| Literate                                         | 105 | (61.4)  | 19 | (45.2)  |         |
| Radio                                            | 123 | (71.5)  | 28 | (65.1)  | 0.30    |
| Bicycle                                          | 91  | (52.9)  | 21 | (48.8)  | 0.55    |
| Telephone                                        | 124 | (72.1)  | 31 | (72.1)  | 1.00    |
| Generator                                        | 27  | (15.7)  | 11 | (25.6)  | 0.20    |
| Television                                       | 23  | (13.4)  | 13 | (30.2)  | 0.03    |
| Fridge                                           | 1   | (0.6)   | 1  | (2.3)   | 0.35    |
| Boat                                             | 31  | (18.0)  | 8  | (18.6)  | 0.71    |
| Household size                                   |     |         |    |         | 0.61    |
| 0-4 members                                      | 23  | (13.5)  | 3  | (7.0)   |         |
| 5-7 members                                      | 41  | (24.1)  | 9  | (20.9)  |         |
| 8-12 members                                     | 57  | (33.5)  | 15 | (34.9)  |         |
| >12 members                                      | 49  | (28.8)  | 16 | (37.2)  |         |
| Proportion of children attending school in the   |     |         |    |         |         |
| household                                        |     |         |    |         | 0.60    |
| None of them                                     | 29  | (17.6)  | 4  | (9.8)   |         |
| Less than half                                   | 63  | (38.2)  | 17 | (41.5)  |         |
| More than half                                   | 54  | (32.7)  | 13 | (31.7)  |         |
| All of them                                      | 19  | (11.5)  | 7  | (17.1)  |         |
| Distance to the closet health center             |     |         |    |         | 0.15    |
| Need of transport                                | 51  | (29.7)  | 17 | (39.5)  |         |
| Walking distance                                 | 121 | (70.3)  | 26 | (60.5)  |         |
| Other cholera cases in the household             | 6   | (3.5)   | 2  | (4.7)   | 0.69    |
| Travelling or receiving a visit in the last week | 35  | (20.3)  | 11 | (25.6)  | 0.34    |
| Participation in a burial ceremony               | 2   | (1.2)   | 1  | (2.3)   | 0.23    |
| Water source                                     |     |         |    |         | 0.11    |
| Pump                                             | 84  | (48.8)  | 20 | (46.5)  |         |
| Protected well                                   | 39  | (22.7)  | 14 | (32.6)  |         |
| Unprotected well                                 | 6   | (3.5)   | 2  | (4.7)   |         |
| Water from natural source                        | 42  | (24.4)  | 7  | (16.3)  |         |
| Other                                            | 1   | (0.6)   | 0  | (0.0)   |         |
| Treatment of the drinking water                  | 43  | (25.4)  | 11 | (25.6)  | 0.66    |
| Recipient to store drinking water with a lid     | 170 | (98.8)  | 43 | (100.0) | 0.35    |

Table S2. Characteristics of the non-cholera watery diarrhea case-patients and control-subjects included in the indicator bias analysis, Boffa and Forécariah, Guinea, 2012.

| Eating food in a public space                   |     |        |    |        | 0.21 |
|-------------------------------------------------|-----|--------|----|--------|------|
| Never                                           | 117 | (68.0) | 28 | (65.1) |      |
| Sometimes                                       | 27  | (15.7) | 10 | (23.3) |      |
| Soap available in the household                 | 113 | (65.7) | 31 | (72.1) | 0.29 |
| Washing hands before eating                     | 144 | (83.7) | 37 | (86.0) | 0.83 |
| Washing hands after eating                      | 87  | (50.6) | 22 | (51.2) | 0.69 |
| Washing hands after going to the toilet         | 93  | (54.1) | 25 | (58.1) | 0.47 |
| Washing hands after cleaning a baby after       |     |        |    |        |      |
| defecation                                      | 16  | (9.3)  | 3  | (7.0)  | 0.59 |
| Washing hands before cooking                    | 23  | (13.4) | 6  | (14.0) | 0.91 |
| Usual place of defecation                       |     |        |    |        | 0.28 |
| Latrine                                         | 61  | (35.5) | 15 | (34.9) |      |
| Pit in the yard                                 | 81  | (47.1) | 17 | (39.5) |      |
| In the ground                                   | 30  | (17.4) | 11 | (25.6) |      |
| Sharing the latrine                             |     |        |    |        | 0.17 |
| Just for the household                          | 73  | (48.7) | 13 | (38.2) |      |
| Several households                              | 48  | (32.0) | 11 | (32.4) |      |
| Anybody                                         | 29  | (19.3) | 10 | (29.4) |      |
| Sharing the latrine with someone suffering from |     |        |    |        |      |
| cholera                                         | 9   | (7.1)  | 5  | (16.7) | 0.23 |
| Flooding latrine                                | 11  | (7.4)  | 4  | (11.8) | 0.39 |

# S6. Sensitivity analysis of the vaccine coverage estimates considering the uncertainty about the vaccination status.

In the Scenario 1 of the sensitivity analysis individuals reporting vaccination but without cards are considered as unvaccinated and in Scenario 2 are considered as vaccinated

|                                                 | cor | ntrols | c  | ases   | VE    | 95       | %CI |        | P value |
|-------------------------------------------------|-----|--------|----|--------|-------|----------|-----|--------|---------|
|                                                 | Ν   | (%)    | Ν  | (%)    | %     |          |     |        |         |
| Vaccination status                              |     |        |    |        |       |          |     |        |         |
| Unvaccinated                                    | 23  | (14.4) | 15 | (37.5) |       |          |     |        |         |
| Incomplete course (with card)                   | 22  | (13.8) | 7  | (17.5) |       |          |     |        |         |
| Incomplete course (without card)                | 14  | (8.8)  | 7  | (17.5) |       |          |     |        |         |
| Full course (with card)                         | 68  | (42.5) | 6  | (15.0) |       |          |     |        |         |
| Full course (without card)                      | 33  | (20.6) | 5  | (12.5) |       |          |     |        |         |
| Scenario 1: those without cards as unvaccinated |     |        |    |        |       |          |     |        |         |
| Unvaccinated                                    | 70  | (43.8) | 27 | (67.5) | Ref   |          |     |        |         |
| Incomplete course (with card only)              | 22  | (13.8) | 7  | (17.5) | 11.8% | (-140.1% | -   | 67.6%) | 0.80    |
| Full course (with card only)                    | 68  | (42.5) | 6  | (15.0) | 81.9% | (49.2%   | -   | 93.6%) | 0.001   |
| Scenario 2: those without cards as vaccinated   |     |        |    |        |       |          |     |        |         |
| Unvaccinated                                    | 23  | (14.4) | 15 | (37.5) | Ref   |          |     |        |         |
| Incomplete course (with and without card)       | 36  | (22.5) | 14 | (35.0) | 38.9% | (-55.2%  | -   | 76.0%) | 0.30    |
| Full course (with and without card)             | 101 | (63.1) | 11 | (27.5) | 84.0% | (59.7%   | -   | 93.6%) | < 0.001 |

*Table S3. Sensitivity analysis of the vaccine effectiveness (VE) considering the uncertainty of vaccination status among those reporting vaccination but without vaccination cards.* 

### S7. Adverse events following immunization

Surveillance of adverse events following immunization (AEFI) was implemented at vaccination sites, health centers and health posts in the areas targeted for the cholera vaccination campaign. An AEFI was defined as a medical occurrence detected by the vaccination site supervisor or a physician with an onset up to 14 days after receipt of a dose of vaccine. During the awareness campaign and at the time of vaccination, participants were told to report to a vaccination site or a health center if they felt ill after receiving the vaccine. The following data were collected using a standardized form: age, sex, pregnancy, history of allergies, vaccination date, consultation date, date of onset of the symptoms, type of symptoms, and clinical outcome (recovery, transfer or death).

Overall, 48 individuals spontaneously reported symptoms that were linked with the vaccine by the health personnel and considered as AEFI with 35 after the first round and 13 after the second round. In total, 29 were women (60%) and the median age was 27 years (IQR: 16–36 years). Seven patients reported having a history of allergies (15%). The delay between vaccination and symptom onset is shown in Figure S5, the median delay was 7 hours (IQR: 1–24 hours). The symptoms reported were mainly gastro-intestinal (Table S4). Most of the patients (n=33, 69%) reported more than one symptom.



*Figure S5. Box-plot of the delay in hours between the vaccine intake and the onset of the AEFI. The median time is represented by a red diamond.* 

| Symptom     | n = 139 | %      |
|-------------|---------|--------|
| Diamhan     | 20      | (20.1) |
| Diarrnea    | 28      | (20.1) |
| Vomiting    | 22      | (15.8) |
| Stomachache | 14      | (10.1) |
| Fever       | 15      | (10.8) |
| Weakness    | 15      | (10.8) |
| Nausea      | 12      | (8.6)  |
| Dizziness   | 9       | (6.5)  |
| Headache    | 5       | (3.6)  |
| Borgorygms  | 2       | (1.4)  |
| Anorexia    | 2       | (1.4)  |
| Other       | 15      | (10.8) |

*Table S4. Symptoms reported by the forty-eight patients reporting adverse events following immunization.* 

### S8. References

- 1. Boiro MY, Lama N, Barry M, Diallo R, Morillon M. [Cholera in Guinea: the 1994-1995 epidemic]. Med Trop (Mars) [Internet] 1999 [cited 2012 Jul 10];59(3):303–6. Available from: http://www.ncbi.nlm.nih.gov/pubmed/10701212
- 2. Sudre B, Bompangue D, Piarroux R. Epidémiologie du choléra et Evaluation du Système d'Alerte Précoce en République de Guinée. 2009.
- 3. Safa A, Nair GB, Kong RY. Evolution of new variants of *Vibrio cholerae* O1. Trends Microbiol. 2010;18:46 –54. DOI: 10.1016/j.tim.2009.10.003